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Introduction

The main goal of this joint work is to develop machine learning algorithms for the automatic
classification of bird data as collected by the BirdScan Radar developed by the Swiss
Ornithological Institute (Vogelwarte). Because validation of any algorithms developed
requires data that has been accompanied by observations of birds by expert ornithologists, a
database of measurements recorded from at Grenchenberg, which included a high
percentage of observations, was used to develop and test algorithms. The Grenchenberg

data set consists of the following ornithologist validated measurements:

> Insects . 482
> Birds 1 213
» Waders . 68
» Waders (big) : 8
» Passerines 1 328
» Passerines (big) 27
» Flock (small) 12
» Flock (passerine) o1
» Other : 58

To ensure that the classes are more equally distributed in numbers, this data was re-
partitioned into the following classes:

> Insects 1 482
> Birds 1213
» Passerines : 336
» Waders 77
» Other : 59

The similarities and differences between examples of signatures from the main biological
classes may be seen in Figure 1. A number of important observations may be made. First,
at initial glance the insect and wader signatures may appear to be highly similar as they both
exhibit a downward concavity; however, the frequency content of the oscillations
superimposed upon this trend is visually different. Insect oscillation frequencies are higher
than that of the oscillations caused by the wing flapping of waders. A similar difference in
frequency may be observed between birds and passerines. Not unexpectedly, therefore, the
wing flapping frequency and derivatives relating to flapping pattern are critical for
discriminating differing classes of biological targets.

Features for Class Discrimination

In particular, two types of features were extracted to aide in class discrimination: physical
features and transform based features. Physical features refer to those parameters that may
have physical or biological significance; they are features that humans may easily relate to
the flight characteristics of the birds or insects. Physical features include:

Distance (d)

Wing flapping frequency (wff)

The derivative of the wing flapping frequency (wff_2)

The number of times there is a period of pausing or no flapping (nPause)
The average duration of flapping (Avg_pulsel)

YV VV VY
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Figure 1. Example signatures for the main biological classes.

The average duration of pausing (Avg_pausel)

The standard deviation of the duration of flapping (Dev_pulselL)

The standard deviation of the duration of pausing (Dev_pauseL)

The ratio of the flapping duration to the pausing duration (PulsePauseR)
The maximum level of the signal (pegel)

Polarization ratio

Radar cross section (RCS)

Square root of the RCS

VVVYVYVYYVYVYY

Physical features, while intuitive and directly relevent to the classification problem, have the
disadvantage of now always being easily estimable. For example, how accurately can the
pulsing and pausing periods really be distinguished? Based on these estimates, how
accurately can wing flapping frequency be estimated?

Indeed, within the Grenchenberg database there were many instances when wing flapping
frequency or other parameters could not be estimated, and where hence simply empty boxes
within the database, as shown in Figure 2. However, the classifier needs to have all features
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4 L M N 0 P q Formula Bark w X Y z AA AB AC
R 645 NULL NULL NULL NULL 08 0 NULL NULL NULL NULL NULL 079706 105043 1 NULL 015125

2 462883 559.2 NULL NULL NULL NULL 03 0 NULL NULL NULL NULL NULL 0157198 78,1326 1 NULL 0011535
3 46262 317.7 NULL NULL 18,184 NULL 038 0 NULL NULL NULL NULL NULL 0413228 95,2421 1 NULL 237E-D
4 462517 15495 NUL NULL NULL NULL 08 ONULL NULL NULL NULL NULL 100099 95,1303 1 NULL 1,360
5 462,62 109.2 NULL NULL 921626 NULL 03 0 NULL NULL NULL NULL NULL 00759503 60,1135 1 NULL 0000135
6 462511 379.2 NULL NULL NULL NULL 038 0 NULL NULL NULL NULL NULL 0584038 92,1965 1 NULL 9,700
7 462517 154.2 NULL NULL 15,350 NULL 03 5017429 03373 034755 0476802 196386 0204214 003705 1 NULL 404ED
8 42577 40,7 NULL NULL NULL NULL 03 0 NULL NULL NULL NULL NULL 0563451 96,1308 1 NULL 53850
9 46262 4827 NULL NULL NULL NULL 038 0 NULL NULL NULL NULL NULL 0446214 96,1178 1 NULL 0,0001032
1 46262 T1,7 HULL NULL NULL 15,3604 03 0 NULL NULL NULL NULL NULL 0169661 03411 1 NULL 93850
i 462577 104.7 NULL NULL 105405 10,3899 08 0 NULL NULL NULL NULL NULL 00375043 77,3502 1 NULL 1,12E0
12 46262 176,7 NULL NULL NULL NULL 038 0 NULL NULL NULL NULL NULL 0746386 925126 1 NULL 42560
13 46262 83,2 NULL NULL NULL 47438 03 1 NULL NULL NULL NULL NULL 0423074 T5.845 1 NULL 12360
14 462577 92.7 NULL NULL 105405 108417 08 1 NULL NULL NULL NULL NULL 00679847 82,2576 1 NULL 34260
15 43977 74T NULL NULL 13,7692 NULL 03 14 0117145 0358375 0078%74 0190943 30555 0285791  -T0.1178 1 NULL 236E-D
16 462577 101,7 NULL NULL 9,03819 NULL 03 O NULL NULL NULL NULL NULL 027571 682513 1 NULL 0,0001243
17 462577 50,7 NULL NULL NULL 1TH177 03 0NULL NULL NULL NULL NULL 00195047 82958 1 NULL 50050
18 43977 92.7 NULL NULL 15,8944 NULL 03 6 041325 01643 025577 101084 00967451  -782703 1 NULL 8,56E-D
19 462517 566,7 NULL NULL 100888 10,0888 03 0 NULL NULL NULL NULL NULL 0252546 95,456 1 NULL 0,0002286
0 459728 732 NULL NULL 17,5002 NULL 03 5 0374134 0282776 0426207 0560663 0755814 0193281 747095 1 NULL 75560
A 4662 143,7 NULL NULL 17,544 NULL 03 11 0207514 0436643 00894364 0099553 210417 0092655 13723 1 NULL 0,0001407
2 66 368,7 NULL NULL NULL NULL 03 0 NULL NULL NULL NULL NULL 0283095 937912 1 NULL 8,01E-0
B 46262 76,2 NULL NULL 10,085 NULL 03 7018643  O4TTTI4 040835 0146300 287013 018147 605257 1 NULL 29350
% 462517 97,2 NULL NULL NULL 18,9729 03 1 NULL NULL NULL NULL NULL 00600929 68,3535 1 NULL 0,0001014
B 46262 65,7 NULL NULL 18,5229 NULL 03 9 016643 0350179 039451 0332979 21039 0268024 625406 1 NULL 9,66E-0
% 462577 283.2 NULL NULL 15,9613 NULL 03 5 NULL NULL NULL NULL NULL 0336053 89,1609 1 NULL 6,07E-0
20 45978 94,2 NULL NULL NULL NULL 03 8 0174016 0596005 0223257 (0073995 3425 070316 -67.9647 1 NULL 9,79E-D
% 477 61,2 NULL NULL NULL NULL 03 0 NULL NULL NULL NULL NULL 00893915 82,3416 1 NULL 83750
B 477 80,7 NULL NULL NULL NULL 03 5 030885 0283533 0756552 0920577 (00940064 837792 1 NULL 2140
0 46262 73,2 NULL NULL 17,6193 NULL 03 15 016212 0261554 010183 0126422 16133 (0131376 646493 1 NULL 7,66E-D
M 46262 13,7 NULL NULL NULL NULL 03 0 NULL NULL NULL NULL NULL 0493941 -B0.6568 1 NULL 24060
2 462577 158.7 NULL NULL 930576 NULL 08 0 NULL NULL NULL NULL NULL 0168344 BBAITT 1 NULL 70760
3 462517 548,7 NULL NULL NULL 10,8417 03 0 NULL NULL NULL NULL NULL 0192301 94,7802 1 NULL 0,0002346
3% 462571 163.2 NULL NULL NULL NULL 03 1 NULL NULL NULL NULL NULL 0189934 913768 1 NULL 40260
3B 462577 181.2 NULL NULL NULL NULL 08 0 NULL NULL NULL NULL NULL 0070374 026025 1 NULL 461E0

Figure 2.

Snap shot of database showing features with NULL entries.

extracted in all cases to successfully discriminate the data: some number needs to be filled
in; it can’t just be left blank. Two approaches for dealing with null features were tried:

Assign a numberical value to the NULL that is clearly different from all possible
values, i.e. assign an outlier.

NULL entries.

In this option, the value of 8888 was replaced for all

Assign a mean value of the class based upon other measurements to the NULL
entries. Thus, however many, for example, passerine data had a measurement of
wing flapping frequency, these measurements would be averaged and used in place

of NULL values for passerine wing flapping frequency.

Each of these approaches has advantages and disadvantages. Assigning an outlier gives a

numerical distinction representative of that feature not being attainable;

however, it also

introduces dependences that are not normally present in the data when varying features both
are recorded NULL values. Assigning the mean class value to a NULL prevents statistical
distortion of results, and precludes introduction of abnormal inter-class dependencies, but, it
is dependendent upon the accuracy of human classification results. And since the human
observations serve as “ground truth” to test the algorithms, average may actually lead to
over-optimistic results by improving the accuracy of feature value.

In addition to physical features, three types of transform based features were also extracted:

» 1st — 4th Cepstrum Coefficients

» 1st —4th Linear Predictive Coding Coefficients

> 1st — 5th Discrete Cosine Coefficients

The reason for including these features is to have a certain number of features that are
guaranteed NOT to have any NULL values. Moreover, these features have been found in
the literature to yield good discrimination results in processing time-frequency distributions
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attained in fields such as speech processing and micro-Doppler based human activity
recognition. Thus, in this work, we wanted to determine whether they could also be useful in
discriminating biological signals. Next, the technical definitions of these features are
described.

Cepstrum Coefficients: The cepstrum, c/n], is defined as the inverse Discrete Fourier
Transform (DFT) of the log magnitude of the DFT of the input, x/n]:

cn]= 3" {log 3{x[n]}} (1)

where 3{} is the Fourier transform. Any number of the coefficients of the cepstrum may be
extracted as features. As with the Fourier Transform, the cepstrum contains harmonic
information; however, the log spectrum enables compression of the dynamic range and thus
reduction of amplitude differences in the harmonics.

Linear Predictive Coding Coefficients: LPC'’s are typically computed from the 1/Q output of
the radar, x/n], by representing this signal as the linear combination of past values:

x[n]= i alk]x{n—k], (2)

where afk] are the LPC’s and p is the total number of LPC’s. To compute the LPC’s, the
difference between the model in (2) and the true signal — the error, e[n]zx[n]—fc[n] —is

sought to be minimized. Many methods may be employed for this minimization, such as
computing the autocorrelation followed by a Levinson-Durbin recursion.

Discrete Cosine Coefficients: The DCT is computed for a one-dimensional sequence of
length N as

)

n(2k+1)u]
2N ’

Cw) = a(u) T f (k)cos |

for u=0,1,2,...,N—1. The coefficients of this transform may be used as features for
classification.



STSM IDENTIFICATION OF BIOLOGICAL SIGNALS IN RADAR OCTOBER 2015

Feature Ranking with Mutual Information’

Feature ranking is accomplished by assessing the degree of relevancy of a feature to a
given classification problem. This is done by first quantifying the information content of
features. Formally, the entropy of a discrete random variable is defined as

X)=-3" p(x)-log, p(x) @

The entropy of a random variable is the measure of uncertainty about that random
variable. The mutual information between two discrete random variables is defined as

ZZp(x y)- logz( px, ) J (5)

p(x)p(y)

where p(x,y) is the joint probability mass function (PMF), and p(x) and p(y) are the marginal
PMFs of the random variables X and Y, respectively. Mutual information between two
random variables is the measure of information one random variable gives about the other.
Random variables that are independent of each other have zero mutual information, while
mutual information reaches its maximum value when the two random variables are fully
correlated.

The concept of mutual information can be used to order features based on their
contribution of information. Let's define f; and f, as random variables referring two features,
while C is a random variable referring to class. Then, the mutual information between f;, 1,
and C is defined as /(f, 1,;¢) and can be written in two ways:

I(f, [:O) =1(f;;O)+I(f,:C| 1) (6)
I(f,, [5:O) =1(f;O)+ I(f;:Clf>) (7)

where, /(f1;,C) and /(f2;C) represent the mutual information between the class variable C and
the first feature f; and second feature f,, respectively. The term [(f2;C|f1) represents the
mutual information between the second feature and C, given the first feature while /(f1;C|f2)
is defined similarly. Then, to determine which of the two features (f; or f,) provides more
information about the class variable C, /(f1;C) and /(f2;C) are compared and the feature that
results in a larger value is selected. Let the set of all features be denoted by F, for F =
{f1,f,,...,fn}, where f; (i=1,2,...,N) indicate individual features.

Then, to find a M-element subset S of F, S = {f,'f.',...,fu}, such that I(S;C) is the largest
among all such subsets, the above approach may be generalized by comparing all /(S;C) for
all M-element subsets.

Ideally, computing the conditional and joint probability mass functions used to calculate
1(S;C) requires the calculation of multi-dimensional histograms. However, due to the “curse of
dimensionality” approaches that yield high performance for low volumes of data become

! Exerpted from prior relevent work by Dr. Giirbiiz, namely: B. Tekeli, S.Z. Giirbiiz, and M. Yiiksel, “Information
theoretic features selection for human micro-Doppler classification,” IEEE Transactions on Geoscience and
Remote Sensing, Vol. 54, Iss. 5, pp. 2749 — 2762.
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increasingly unworkable as the dimensionality of the data (number of features and classes)
increases. Therefore, practical implementation of /(S;C) requires reducing the dimensionality
by either eliminating features with low information content or high redundancy with respect to
other features for the classification problem at hand. Much research has been done on how
to optimally compute mutual information with the minimum computational load.

The Mutual Information Based Feature Selection (MIFS) Algorithm proposed by Battiti in
1994 implements greedy selection of features to arrive at a more computationally tractable
approach to mutual information calculations. In MIFS, features are selected one by one. In
each iteration, the feature that maximizes

ma){l(C; £)-B>1(f; fl.)j (8)

=

is sought. The first term in (8) is the mutual information between feature f;in F and the class
variable C, and [(f;f;) is the mutual information between f; and the already selected feature f;
in the selected feature set S.

Initially, the set of selected features is empty. Therefore, in the first round of the algorithm,
simply, the feature £’ in F that maximizes /(C;f)) is calculated. Then fis excluded from F, and
is included in S. In the second round, the feature in F that maximizes I(C;ff)_'nggesl(fs;fi)

is searched. The algorithm repeats itself until all k features are selected. The computation in
(7) accounts for selecting a feature that is highly informative about the class variable, but at
the same time, is not very similar to previously selected features.

In MIFS, the parameter g controls the relative importance of relevance and redundancy. If
B=0, the algorithm chooses features that more or less provide the same information. As f3
increases, maximization of the expression in (8) requires that the features selected in each
round of the algorithm should be such that they are increasingly independent from each other
(I(fs;f) should be small). Moreover, for large S, the relationship between the selected features
and the class variable, as given by /(C;f), is valued less, so that the relationship between
features has a more significant effect on the expression in (8), which is maximized during
feature selection. This is a problem because we would like to find the minimal feature set that
has the greatest relevance to the class variable, not simply a set of independent features. To
alleviate this problem, Kwak and Choi suggest an adjustment to MIFS as follows

max([(C;ﬁ)—ﬂ;%l(ﬁ;fi)] 9)

Here, H(fs) is the entropy of a feature in the selected feature set S. As I(C;f;) < H(fs), the ratio
in (9) indicates the importance of f; in S, and this ratio is used as a coefficient for /(ff). Thus,
f; needs to be less relevant to more informative features; yet, redundancy is tolerable for less
informative features. Moreover, at the beginning of the selection process, relevance to the
class variable is ensured, while as the selected feature set grows, the new selections are
required to be increasingly less redundant. In this way, the ratio /(C;fs) / H(fs) facilitates
efficient de-selection of features.
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Classification Performance Achieved With All Features

Once all 25 features were extracted, these were supplied to four different types of classifiers:
1. Naive Bayesian
2. Multi-Class Support Vector Machine (SVM)
3. Multilayer Perceptron
4. Random Forest

Results were obtained for both possible ways of dealing with NULL values. These results
are now presented in turn.

REPLACE NULL WITH 8888 & USE NAIVE BAYESIAN CLASSIFIER

> Correctly Classified Instances 480
> Incorrectly Classified Instances 220

68.5714 %
31.4286 %

Table 1. Confusion matrix for Naive Bayesian classifier with 8888 replacing nulls.

0 1 4000 5000 9999
0 281 0 3 0 1
1 0 57 18 0 52
4000 0 75 69 0 55
5000 0 0 0 51 0
9999 0 9 6 1 21

REPLACE NULL WITH 8888 & USE MULTI-CLASS SVM CLASSIFIER

> Correctly Classified Instances 566
> Incorrectly Classified Instances 134

80.8571 %
19.1429 %

Table 2. Confusion matrix for Multi-Class SVM classifier with 8888 replacing nulls.

0 1 4000 5000 9999
0 285 0 0 0 0
1 0 63 64 0 0
4000 2 31 166 0 0
5000 0 0 0 52 0
9999 1 22 13 1 0
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REPLACE NULL WITH 8888 & USE MULTILAYER PERCEPTRON CLASSIFIER

> Correctly Classified Instances
> Incorrectly Classified Instances

%
%

Table 3. Confusion matrix for Multilayer Perceptron classifier with 8888 replacing nulls.

0 1 4000 5000 9999
0 285 0 0 0 0
1 0 76 47 0 4
4000 2 36 160 0 1
5000 0 0 0 52 0
9999 1 18 10 0 8

REPLACE NULL WITH 8888 & USE RANDOM FOREST CLASSIFIER

> Correctly Classified Instances
> Incorrectly Classified Instances

Table 4. Confusion matrix for Random Forest classifier with 8888 replacing nulls.

0 1 4000 5000 9999
0 285 0 0 0 0
1 0 125 2 0 0
4000 0 1 198 0 0
5000 0 0 0 51 0
9999 0 0 3 1 33

This same procedure was then repeated for the case when the NULL values were replaced

with the class average. A summary of results is provided in Table 5.

Table 5. Summary of classification results when all 25 features are utilized.

% NULL — 8888 NULL — Average
Naive Bayesian 69 90
Multi-Class SVM 81 91
Multilayer Perceptron 83 93
Random Forests 99 98
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Classification Performance versus Number of Features

As mentioned in the section on ranking features, usually using all possible features does not
result in the optimal classification performance due to the “curse of dimensionality.” In this
work, one of our goals was not just to determine the best possible classifier, but also to
ascertain the minimum number of required features and which features were the most critical
for class discrimination. To accomplish this goal, the mutual information metric was first
used to rank all features according to their importance. Below, each of the features is listed
by order of the importance ranking as given by their mutual information.

Ranking of Features:

Distance

2" LPC Coefficient

Number of Pauses

Pegel

2" Cepstrum Coefficient

Wing Flapping Frequency

3™ Cepstrum Coefficient

1% Cepstrum Coefficient

9. Average Pulse Length

10. Average Pause Length

11. Standard Deviation of the Pulse Length
12. Standard Deviation of the Pause Length
13. Ratio of Pulse to Pause Length

14. Derivative of Wing Flapping Frequency
15. RCS

16. Polarization Ratio

17. Square Root of the RCS

18. 3" DCT Coefficient

19. 1% DCT Coefficient

20. 2" DCT Coefficient

21. 4" DCT Coefficient

22. 4™ LPC Coefficient

23.  1°'LPC Coefficient

24. 3" LPC Coefficient

25. 4" Cepstrum Coefficient

©®NOOGORAWDN =

In regards to this ranking, a number of important comments and observations should be
made. First, this is not an absolute ranking; use of a different metric would result in a
different ranking. Furthermore, results could change as additional data is included in the
study. Second, while some parameters seem statistically significant, they are known to be
more or less independent of the biological class, e.g. distance. Third, as expected several
physical features, especially, wing flapping frequency scored very high; happily, some of the
newly explored features, such as the 2nd LPC coefficient and cepstral coefficients seem to
be hopeful as novel features that could improve discriminitivity.

Table 6 summarizes the performance variation as a function of feature number, when the
above listed importance ranking is utilized. In other words, when just 24 features are used,
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the 4th Cepstral Coefficient (ranked 25) is discarded from the feature set. Figure 3
graphically shows the dependency of classification performance on number of features used.
Notice that beyond 5-8 features, comparably little performance improvement is achieved.

Table 6. Classification performance versus number of features.

% CLASSES
fe:t::es Naive Bayesian | Multi-Class SVM P“:‘:lte":z ﬁ:\ Random Forest

25 69.14 81 82.43 99.14
24 69.14 81.14 84 99.14
23 69.14 81.14 81.86 98.86
22 69.71 81.14 82.43 99
21 68.86 81.43 84.43 99.29
20 68.71 81.14 84.86 99.14
19 68.86 80.71 84.14 98.86
18 68.29 80.57 84.57 99.14
17 68.29 81.14 82.86 99.14
16 68.29 80.86 81.57 99.14
15 68.29 80.86 82.57 99.14
14 68.14 80.86 81.86 99.43
13 70 80.86 81.14 97.14
12 70 80.86 81.86 97.57
11 70 81 81.29 97
10 70 80.86 81.43 98.14
9 69.86 80.86 82.14 98.57
8 62.71 73.43 76.43 94
7 62.71 73.43 76.43 92.86
6 62.71 74 76 94
5 59.14 62 67.86 66.86
4 49.71 53.57 56 53.54
3 50.14 48.29 50.26 45.14
2 46.57 40.71 46.86 39.57

10
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Figure 3. Graphic showing dependence of classification performance of number of features.

Classification Performance for a Single Feature

The significance of single features may also be assessed by looking at the impact of

classification directly, as opposed to relying on a independent metric.

results are dependent upon the classifier.

In this case, the

Note that the wing flapping frequency (wff) and
average duration of flapping (avgPulsel) distinguish themselves as critical features when
using a random forest classifier.

Table 7. Single feature classification results.

% distance 2nd Ipc npause wif ce:sntc:um gYaluiset
R:“d°"‘ 39.29 33.14 64.29 93.14 36.26 91
orest
B Naive 45.14 46.86 61 58.86 40.71 48.14
ayesian

Multilayer 47 48.29 64.14 68.43 40.71 48.14
Perceptron
Multhrsess | 4071 46.57 62.14 68.43 40.71 48.14

11
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Conclusions

From these studies a number of important conclusions may be made:

» Random forest appears to be a superior classifier for biological signal classification.

» Wing flapping frequency and related time parameters pertinent to durations of
flapping and gliding are important. Algorithms that could be developed to improve
estimates of these parameters would contribute significantly to improving
classification performance.

» Transform based coefficients, such as the 2nd LPC coefficient and cepstral
coefficients, at least at first sight, appear to have the potential to improve biological
signal classification.

» Carefully selecting a handful of features is more critical than applying by brute force a
large number of features.
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