

Grand challenges in animal movement research

Where are we and where are we headed?

Silke Bauer and Nir Sapir

Migrants link communities

Migrant services and disservices

- Pollination and seed dispersal
 - Birds disperse plant seeds & invertebrates
 - Many organisms, including fruit-plants depend on bat-pollination
 - Contribution to genetic exchange, biodiversity,

- Pest control
 - Bat consumption of insect pests
 - Economical benefits: crop damage avoided & reduced need of pesticides

Ecosystem services and disservices

- Spread of parasites
 - Mig. birds & bats harbour many parasites, also with zoonotic potential: Ebola, AviFlu, hendra, SARS, etc.
 - Role of migrants in long-distance transport debated
 - Insects spread crop pathogens
- Agricultural damage
 - Insects consume crops
- Collisions with man-made structures
 - Aircraft-safety
 - Wind turbines
 - Buildings, power lines, etc.

Relevance for human health, agriculture, economy

Continent-wide networks of weather radars

Identifying grand challenges

Approach:

- Brainstorm, questionnaire to researchers worldwide
- Selection of highest-ranked questions
- Grouping into major themes

- Various ways of categorizing questions, e.g.
 - Novelty: Long-standing novel
 - Level: Fundamental applied
 - Urgency of answer: urgent can-wait
 - Target audience: researchers, policy makers, farmers, funders, etc.

1. Description of migration

- a. Identification of migration corridors, important stopover sites and wintering regions -> migration maps
- b. Quantification of biomass & numbers

2. Mechanisms of movement

- a. Cross-taxon comparison of navigation and orientation strategies, cues, response to ecological barriers
- Influence of weather on migration, survival and population dynamics

3. Services and disservices

- a. Effect of transfer of biomass, nutrients, pathogens and genetic material on ecosystem processes?
- b. Early warning systems for invasion of migratory pests of crops, livestock and human health
- c. Migration forecasts

What is the effect of ...

a. climate change on phenology of migration?

b. anthropogenic light and noise on migration?

c. man-made structures on migration routes and flight

behaviours?

How can we effectively conserve migrants and migrations (not mentioned)?

- Improve classification and identification capabilities of radars for a better taxonomic resolution
- Radar data management: (long-term) storage and access, visualization (not mentioned)

c. Integrate radar data with other data

 Where are we in providing answers to these questions, what have we achieved within ENRAM?

BioScience •

PLOS ON

J Comp Physiol A (2017) 203:509-529

(CrossMark From Agricultural Benefits to **Aviation Safety: Realizing the Potential of Continent-Wide** Radar Networks

MENZ, NIR SAPIR, MICHAŁ CIACH, LARS B. PETTERSSON, JEFFREY F. KELLY, HIDDE LEIJNSE,

DOI 10.1007/s00359-017-1181-9

REVIEW

Atmospheric conditions create freeways, detours and tailbacks for migrating birds

Judy Shamoun-Baranes¹ ○ · Felix Liechti² · Wouter M. G. Vansteelant^{1,3}

MIGRATION

Mass seasonal bioflows of high-flying insect migrants

Gao Hu, 1,2,3g Ka S. Lim, 2 Nir Horvitz, 4 Suzanne J. Clark, 2 Don R. Reynolds, 5 Nir Sapir, 6 Jason W. Chapman 2,34

23 DECEMBER 2016 • VOL 354 ISSUE 6319 DOI 10.1186/s40657-017-0081-6

sciencemag.org SCIENCE Avian Research

Migration of the Western Marsh Harrier to the African wintering quarters along the Central Mediterranean flyway: a 5-year study

Current Biology

Correspondence

Detection of flow direction in highflying insect and songbird migrants

Jason W. Chapman^{1,2,†,*}, Cecilia Nilsson3,†, Ka S. Lim1, Johan Bäckman³, Don R. Reynolds^{1,4}, Thomas Alerstam³, and Andy M. Reynolds1

RESEARCH ARTICLE

AND JUDY SHAMOUN-BARANES

Innovative Visualizations Shed Light on Avian

SILKE BAUER, JASON W. CHAPMAN, DON R. REYNOLDS, JOSÉ A. ALVES, ADRIAAN M. DOKTER, MYLES M. H.

Nocturnal Migration

Judy Shamoun-Baranes^{1‡}*, Andrew Farnsworth^{2‡}, Bart Aelterman³, Jose A. Alves^{4,5}, Kevin Aziin3, Garrett Bernstein6, Sérgio Branco7, Peter Desmet3, Adriaan M. Dokter1, Kyle Horton⁸, Steve Kelling², Jeffrey F. Kelly⁸, Hidde Leijnse⁹, Jingjing Rong¹⁰. Daniel Sheldon 6,10, Wouter Van den Broeck 11, Jan Klaas Van Den Meersche 12, Benjamin Mark Van Doren2, Hans van Gasteren1

USING HIGH-RESOLUTION gps tracking data of bird GHT FOR METEOROLOGICAL OBSERVATIONS

Relationship between the Intensity of Nocturnal Migration Measured by Radar and the Anthropogenic Mortality of Birds

> ACTA ZOOLOGICA BULGARICA Acta zool. bulg., 69 (2), 2017: 229-237

- a. Migration corridors, stopover sites, wintering regions -> migration maps
- b. Quantification of biomass & numbers

Mass migration, response to environmental conditions and possible consequences

2. Mechanisms of movement

- a. Navigation and orientation strategies, cues, ecological barriers
- b. Influence of weather on migration, survival and population dynamics

Weather is not enough for predicting migration

SCIENTIFIC REPORTS

OPEN Nocturnally migrating songbirds drift when they can and compensate when they must

Received: 16 September 2015 Accepted: 20 January 2016 Kyle G. Horton^{1,2,3}, Benjamin M. Van Doren⁴, Phillip M. Stepanian^{3,5}, Wesley M. Hochachka⁶, Andrew Farnsworth⁶ & Jeffrey F. Kelly^{1,2}

Becciu et al. submitted

Biol, Lett. (2005) 1, 472-475 doi:10.1098/rsbl.2005.0334 Published online 11 July 2005

Migrating locusts can detect polarized reflections to avoid flying over the sea

N. Shashar^{1,2,*}, S. Sabbah^{1,2} and N. Aharoni¹

Behavioral response Atmospheric condition Geographic feature Wind Large water bodies Compensation for drift towards sea

Behavioral response Atmospheric condition Geographic feature Temperature Wind Condition dependent avoidance Large water bodies Compensation for drift towards sea

3. Services & disservices - use & avoidance

Inferring ecosystem health from radar detected mass insect hatches

3. Services & disservices – use & avoidance

Shamoun-Baranes et al.

4. Human influences

- a. Effects of climate change, anthropogenic light & noise, man-made structures
- b. Conservation of migrants and migrations

Shamoun-Baranes et al. Behav. Ecol. 2011

4. Human influences

- a. Effects of climate change, anthropogenic light & noise, man-made structures
- b. Conservation of migrants and migrations

Conservation of migrants

Stopover habitat suitability studied using takeoff densities from low level radar scans

5. Technical challenges

- a. Improve classification and identification
- b. Radar data management, visualization
- c. Integration with individual movement data

Tracking radar

Marine radar

Nilsson et al. submitted

Perspectives

- 1. Radar data collection, exchange, infrastructure
- 2. From radar data to biological information
 - Data management / technical aspects / algorithms etc.
 - Points made in previous talks, Table1 in BioScience paper

 Standard monitoring operational at small to large spatial and temporal scales

Perspectives

- 3. Answering important/urgent ecological questions
- Answers to questions also as comparisons
 - Across taxa birds, insects, bats
 - Across geographic regions, e.g.
 North-America, Asia, Europe

- Response to changes at different time & spatial scales (e.g. climate change vs extreme weather events)
- Identify ecosystem-level consequences of movements (e.g., nutrients, biomass, parasites)

Perspectives

- 3. Answering important/urgent ecological questions
- Modelling: conceptual & simulation develop theory behind mass movements
- Integration
 - Movement ecology across different taxa
 - Radar data with other data (citizen science, individual-based tracking, ringing, physiological, etc.)
 - Different disciplines: Biologists, meteorologists, physicist, IT, signal processing, etc.
 - Application fields
- Deliver products for various stakeholders
 - wind turbine facilities,
 - aircraft collision warnings,
 - conservation of important sites/area,
 - pest insect warnings

Visions

- Link continental networks
- Produce similar figure for
 - Various migrants
 - Continent-wide
 - Global

Thank you

