Quantifying Bird and Insect Movements using Operational Weather Radars Adriaan Dokter^{1,2}, Hidde Leijnse³, Felix Liechti⁴, Hans Beekhuis³, Laurent Delobbe⁵, Pierre Tabary⁶, Iwan Holleman³ ¹Netherlands Institute of Ecology (NIOO-KNAW) ²University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics ³Royal Netherlands Meteorological Institute ⁴Suisse Ornithological Institute ⁵Royal Meteorological Institute Belgium ⁶Météo France Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat ### Bird migration on weather radar Example 17 October 2008 ## Bird migration on weather radar Example 17 October 2008 #### reflectivity factor #### radial velocity ## Bird migration on weather radar Example 17 October 2008 #### reflectivity factor #### radial velocity Target identification #### **Automated processing** 1) Radial velocity analysis (VVP) University of Amsterda # Automated processing 2) precipitation masking ### Weather radar reflectivity Reflectivity η (back-scatter cross-section/unit volume) related to density ρ_{bird} and cross section σ_{bird} : $$\overline{\eta(R)} pprox \overline{ ho_{bird}} \sigma_{bird}$$ Calculate η from the reflectivity factor Z: $$\eta(R) = \frac{\pi^5}{\lambda^4} \left| \frac{m^2 - 1}{m^2 + 2} \right| \cdot Z(R)$$ λ wavelength (5.3 cm), m index of refraction water, Z the reflectivity factor in [mm⁶/m³] ## Weather radar algorithm output #### Weather radar validation Time Comparison bird radar - weather radar (full migration season) ## Aim 1) extracting spatial information #### Stop-over areas (from radar reflectivity data) #### Forest type (LANDSAT data) Gauthreaux & Belser 2005 100 Range from radar (km) 2008 elwarte.ch 150 175 Meteorologisch Inst Ministerie van Verkeer ei # Aim 2) Designing a similar operational algorithm for insects # Radar echos in summer 00 ### Swift wing beat pattern Measured by KNMI weather radar #### Insect & swift echoes University of Amsterdam vogelwarte.ch #### Target identification: Dual polarization radar Detect horizontally and vertically polarized radiation independently #### Bird migration & precipitation simultaneously: Image NOAA Reflectativity facetoricient ρ_{HV} #### **Conclusions** - Weather radar can determine reliable bird density altitude profiles automatically – method is easily portable. - A prototype insect profiling algorithm based on the bird profiling algorithm would be fairly easy to design (for situations without precipitation). - Diurnal insect movements at mid-latitudes much more pronounced in weather radar than nocturnal movements, and more easily distinguished from birds - Cases with spatial overlap insects/birds remain problematic (with and without dual-pol). ## Thank you vogelwarte.ch