From blips on the screen . . .

... to movements of bird and bat populations

How to count targets?

What is a target?

What kind of target is it?

What is my sampling volume? (for this target)

1. How to count targets?

1.1 Echo detection

1. How to quantify movements?

weather radar → reflectivity per volume

dedicated bird radars → targets per volume

Scanned volume depends on:

- the antenna
- power output
- sensitivity
- target size (→ RCS, aspect)

Height distributions

Height distributions

Birdradar

- → static beam at different elevations
- → conical scans at different elevation angles

Quantification of movements

Conical scanning:

- relative temporal pattern
- relative height distribution (vertical mode)

Potential shortcommings:

- partial ground clutter vs. direction of movement
- detection probability of different sized targets
- counting «false» targets
- ??

Quantification of movements

Static scanning:

- «absolute» temporal pattern
- «absolute» height distribution

Potential shortcommings:

- direction of movement
- detection probability of different sized targets
- ??

Comparison of weather and bird radar

Temporal and height pattern

How to solve the problem of target identification

Target identification

Classification of single targets can be based on . . .

- Ground speed
- Air speed
- Echo size (reflecivity,)
- Variation in echo signature (e.g. polarisation, wingbeat pattern, etc.)
- Doppler?

Target identification

Target identification

Echo signature

Echo classification

Echo classification – step by step

Illustration 1: Classification of Echos

Individual tracking

Single tracks recorded by satellite, GPS, Geolocator or anything else

Ground truthing

Trapping

- constant effort sites
- seasonal trapping

Visual observations

- Regular mig. Counts
- Random counts

Other methods

- acoustic counts
- (laser?)

Discussion

- Which parameters can you collect easily with your radar?
- What is the expected overlap with a weather radar nearby?
- Which parameters will be compared between the systems?
 - Quantitative?
 - MTR, absolute/relative, height, other?
 - Qualitative?
 - birds vs non-birds vs insects?
 - Large vs small birds vs flocks?
 - Tracking of (known) single targets?

Effect of average target size on density estimate?

- RCS from Birdradars
- Ground truthing (mass species)
 Effect of flight altitude? → low level?
 Minimum and maximum measures of densities?
 Insects and birds in parallel?

Most bird species involved are small

