

¹ Fraunhofer Institute IAIS (Germany) ² University of Bonn (Germany) ³ City University London (UK) ⁴ University of Lethbridge (Canada) ⁵ University of South Africa

Space Transformation for Understanding Group Movement

Natalia Andrienko^{1,2,3}, Gennady Andrienko^{1,2,3}, Louise Barrett^{4,5}, Marcus Dostie^{4,5}, Peter Henzi^{4,5}

Movement of a group of 13 savannah baboons during 1 day

Group movement

- How did the individuals arrange within the group?
- Were there stable leaders and stable followers?
- Who tended to the front, to the back?
- Were there wanderers, explorers?

- hard to answer using standard techniques

De Hoopvle

Google

Movement of a group of 13 savannah baboons during 1 day

Data transformations

Central trajectory of the group

< 10.0: 178 objects (44.8%) [10.0..30.0): 149 objects (37.5%) [30.0..60.0): 39 objects (9.8%) >= 60.0: 31 objects (7.8%)

Attributes

Map data @2013 AfriGIS (Pty) Ltd, Google

64.04

Analyzing movement of the group as a whole

25/04/2007	25/04/200
16:02-17:11	
Position N	258
Position time	12:55
Max distance to centre	47.27
lean distance to centre	23.04
ledian distance to centre	19.98
Ird quartile distance to centre	31.12
Aaximal direction deviation	180.00
lean direction deviation	106.87
Aedian direction deviation	133.07
Ind quartile of direction deviation	146.31

Classes by Median direction deviation

< 10.0: 178 objects (44.8%) [10.0..30.0): 149 objects (37.5%) [30.0..60.0): 39 objects (9.8%) >= 60.0: 31 objects (7.8%)

From the whole group to the individuals

Map data @2013 AfriGIS (Pty) Ltd, Google

KENNY_5

	23 09:28 Open
	YES
	112.69
	70.03
	-70.03
	101.85
	1
	5.25
	5.6814214
15 minutes	4.0
	2.9357384
15 minutes	16.0

Behaviors of the members in the group

Direction deviation from group

	06	,07	,08	09	10	<u>,</u> 11	,12	13	14	15
KENNY_5										
SARAH_10										
VICKIE_10										
TROY_10									-	
CHRISTINA_10						-				
ALISON_10						-				
RUSHENKA_10								• — — — — — — — — — — — — — — — — — — —		
ALICE_10					-	-				
LYNN_10							-			
ULRIKE_10										
OLGA_10										
JANE_10							-			
CATHERINE_10						-				

Direction deviation from group

90.0

180.0

Trend setting

trend setting												
0.500	KENNY_5 VICKIE_10 TROY_10 SARAH_10 RUSHENKA_10 CHRISTINA_10 ALISON_10 ALISON_10 LYNN_10 ULRIKE_10 DLGA_10 JANE_10 CATHERINE_11	07		09	10	<u>11</u>	12	13	14	15	16	
1.000 0.500 × 0.000	VICKIE_10 SARAH_10 CHRISTINA_10 ALISON_10 ALICE_10 ULRIKE_10	.07	08	09	10	.11	12	13		-	16	17

Trend setting ::= movements of an individual are "copied" by others after a time lag. More specifically:

Trend setting at time unit *t* occurs when an individual takes a movement direction significantly deviating from the direction of the group and at a later moment $t+\Delta$ the group takes the same direction as the individual at time *t*

Parameters: Deviation at *t* is at least 45° $\Delta = 15$ minutes Deviation at *t*+ Δ is at most 5° Not during a group stop

Positions of the trend setting events

Footprints of individuals in the group space

Olga

Animal researchers wish to gain more general knowledge about individuals' movement behaviors in the group by analyzing data from long observation period. Aggregation and summarization of the transformed data support the required generalization.

Sarah

Distributions of the individuals' positions in the group space

animal=KENNY: Average N positions by anin animal=LYNN: Average N positions by anima animal=OLGA: Average N positions by anima animal=RUSHENKA: Average N

animal=SCHWARTZ: Average N positions by animal=TROY: Average N positions by anima animal=ULRIKE: Average N positions by anin animal=VICKIE: Average

rage N positions by animal=SARAH: Average N positions by anin

e N positions by anim_animal=all: Average N positions by animal: %

Distributions of the individuals' positions in the group space ge N positions by anir animal=CATHERINE: Average N positions by animal=CHRISTINA

V positions by animal animal=ULRIKE: Ave

ge N positions by anin animal=LYNN: Average

erage N positions by animal=TROY: Average

imal=SCHWARTZ:

Individual differences become more prominent after subtracting the average position distribution from the individual position distributions.

N positions by animal animal=RUSHENKA

e Nipositions by anir ianimal=VICKIE; Ave

N positions by anim animal=all: Average

Temporal variation of the distribution patterns

Conclusion

- Goal: support specific tasks in group movement analysis
 - Study the movement of the group as a whole (changes of the group's position and spatial footprint)
 - Study the behaviors of the individuals within the group (positions in relation to others and changes of these positions over time)
- Key idea: space transformation
 - Transformed data can be analyzed using usual movement analysis methods
- Test application results: interesting and important insights into collective movement behaviors of baboons
- Other possible applications: race sports

Conceptual foundations

- Multi-perspective view of movement data
- Systematic presentation of visual analytics methods for the different views of movement and analysis tasks
- Transformations between different representations of movement
- Discussion of properties of movement data that affect the analysis and methods for investigating them Movers Trajectories
- Many illustrated examples using diverse real datasets
- Glossary

Questions?

Peter Bak - Daniel Keim - Stefan Wrobel

Visual Analytics of Movement

